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Abstract

The purpose of this final paper is to give a review of some of the major developments in open string field
theory (OSFT). We begin with a review of Witten’s OSFT, and go on to show how this successfully computes the
Veneziano amplitude. Then, we demonstrate how using the techniques of string field theory, one can properly
show how the bosonic string tachyon condenses.

1 Open String Field Theory

The bosonic string in a flat, 26-dimensional background is described by a sigma model of 26 free scalars Xµ

together with a bc ghost system of central charge ´26. The action can be written as

1

2π`2s

ż

d2zBXµB̄Xµ `
1

2π

ż

d2zpbB̄c` b̄Bc̄q (1)

This system contains, among other things, an anomalously conserved ghost current ´ : bc : which gives us that

# zero modes of c´# zero modes of b “ 3´ 3g.

The bc system has two degenerate ground states |Óy , |Òy which correspond to modes c1 |1y and c0c1 |1y.
The full system has a fermionic supersymmetry with a conserved current

jB “ cpTX `
1

2
T ghq ` cB3c (2)

that is a primary operator exactly when the spacetime dimension is 26. Its corresponding conserved charge
QB “

ş

d2z
2πi jB is a nilpotent operator on the Hilbert space Q2

B “ 0. Looking at all closed states modulo exact (i.e.
null) states, we obtain the BRST cohomology on the worldsheet.

Physical states–corresponding to the insertion of vertex operators–are then represented by BRST cohomology
classes subject to the additional Siegel gauge constraint b0 |ψy “ 0. That is, they are states on the cylinder with
ghost number ´1{2. Equivalently, we will view these states on the upper half plane as ghost number 1, which is
more standard in the modern literature. From now on we will use the upper half plane ghost number.

The connected component of the S-matrix can then be written as a sum over open-string world sheet topologies

ÿ

g,b

Ag,brV1pk1q . . . Vnpknqs

where each Ag,b is understood as an n-point conformal correlator of vertex operators. in this essay we will be
focusing on the tree-level open string amplitudes. g “ 0, b “ 1.

In going to string field theory, our variable will the the string field operator Ψ which creates a state of ghost
number 1 that need not be BRST closed. In the the Schrodinger picture of open string field theory we can imagine
cutting out a small half-disk around z “ 0 where Ψp0q is inserted. This is then a functional ΨrX, b, cs on the matter
and ghost fields on the WS. Just as in QFT, these first-quantized wave functionals are promoted to dynamical
fields.

QBΨ “ 0 should then emerge as an equation of motion from a more general string field action. This leads us
to expect a leading-order string field action of the form:

SpΨq “
1

2
xxΨ|QB |Ψy

here xxΨ| denotes the BPZ conjugate of |Ψy.
If |Ψy is not an on-shell state the n-point string field correlation functions will in general be dependent on the

choice of conformal frame used. In other words, we need the explicit data of our local holomorphic coordinate at
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each point of insertion of our manifold1. This space of conformal frames gives a fiber bundle Pg,b,n ÑMg,b,n over
moduli space. We must then choose a section of this bundle for each g, b, n. Additionally this choice of sections
must be compatible upon factorization.

Different ways of introducing coordinates correspond to field redefinitions in the action of the string field
theory. The physical observables, of course, do not depend on these choices. In the next section, we will choose
a coordinate system for the 3-point vertex which gives rise to a simple cubic action. This is Witten’s open string
field theory, introduced in [1].

2 The Three Point Vertex

Important in the construction of the 3-point vertex is that there is a copy of Z3 Ă PSL2pRq. One such copy is
given by the fractional linear transformation F pzq “ 1

1´z . It is easy to see that F pF pF pzqqq “ z, with a fixed point

corresponding to p´1q1{3 “ 1
2p1 ` i

?
3q. We could have picked a different representative in H, giving a different

map F that is still order three. Using this, we can define the three point vertex. Our mapping will be as in the
figure below:

Figure 1: The upper half disk is mapped under h1, h2, h3 to the blue, yellow, and green regions illustrated in this
figure. z “ 0 is mapped then to 0, 18 in the above region, and i is mapped to the mutual interaction point p´1q1{3.

Mapping the upper half-disk to the first (blue) region is given by the simple transformation:

hpzq “ e´iπ{3
p1`iz

1´iz q
2{3 ´ 1

p1`iz
1´iz q

2{3 ` eiπ{3
(3)

Then we can obtain the map from the half-disk to the other three regions by combining this with F pzq. This gives
h1 “ h, h2 “ F ˝ h1, h3 “ F ˝ h2

The insertions of a state at z “ 0 on the disk will correspond to insertions of 3 states at w “ 0, 1,8 on
the corresponding space that the disk is mapped to. Similarly, z “ i will be mapped to the mutual interaction
point p´1q1{3. We take the metric on the half-disk to be the pullback of the flat metric on three strips coming
together with a curvature singularity at their intersection point, as illustrated below (image taken from Rastelli’s
contribution to [2]):

Figure 2: The three point vertex in the cubic OSFT. Note that this surface is everywhere flat except for a curvature
singularity at the intersection of the three sheets.

1I’m implicitly using Schiffer variation here, so that only reparameterization of coordinates on the disks around the points of insertion
matters for distinguishing different coordinate systems.
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Using this map, we can now explicitly write the OSFT action as

S “ ´
1

g2
o

ˆ

1

2
xI ˝Ψp0qQBΨp0qy `

1

3
xh1 ˝Ψp0qh2 ˝Ψp0qh3 ˝Ψp0qy

˙

(4)

here hi ˝Ψ denotes the conformal transformation of Ψ under hi and Ipzq “ ´1{z. If Ψ is a primary of weight ∆
this transforms as ph1ip0qq

∆Ψphip0qq. For a non-primary field, this is a bit more complicated.
Note that on the disk, both of the terms in the action have ghost number 3, as required to cancel the anomaly

in the ghost current. For this reason, it might be reasonable to expect that this action alone is already sufficient for
generating string interactions. We could not, for example, add a term like xΨp0qΨp0qΨp0qΨp0qyD2

to this action,
as that would violate ghost number on the disk.

3 The Veneziano Amplitude

Given the 3-point interaction vertex, one can apply a formalism similar to that in QFT to arrive at higher
point amplitudes. It is instructive to compute the 4-point Veneziano amplitude, and appreciate how the nontrivial
structure of this amplitude, which in QFT requires summing diagrams from the contributions of an infinite number
of high-spin particles, comes from a simple s+t-channel calculation in string field theory.

We follow Giddings’ 86 paper [3] in this section, and take all figures from therein unless explicitly said otherwise.
We have also used [4] to confirm various subtle aspects of the calculation.

As in the last section, we consider only one cubic interaction vertex in our string field theory. Graphically,
we have that Feynman diagrams are obtained from gluing together equal width strips with strip “propagators”
of variable internal length, namely the Schwinger parameters τ . The curvature singularities are the interaction
points only (c.f. Figure 2 ), which requires a ghost insertion to cancel the anomaly in the currrent.

We now turn to the Veneziano amplitude. In string field theory it will be the sum of an s and t channel
diagram as below.

This can be conformally mapped into the following picture, consisting of two copies of this w plane, connected by
a branch cut along CD and EF.

The mapping taking C,D,E, F,A,B on one sheet to 8,´δ2,´γ2, 0, α2, β2 (resp.) on the upper half plane is
nothing more than a standard Christoffel transformation:

dw

dt
“

1

2
N

a

t` γ2
?
t` δ2

?
tpt´ α2qpt´ β2q

To get the second sheet, we take z2 “ t giving a final mapping:

dw

dz
“ N

a

z2 ` γ2
?
z2 ` δ2

pz2 ´ α2qpz2 ´ β2q
(5)
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This gives us our desired relationship between w and z. let us impose some constraints from the physics. In the
reparameterization gauge that we have chosen, the strip width of each incoming and outgoing string is π, so that
a half-contour integral over any one of the insertions at ˘α,˘β should give πi. Consequently we get αβ “ γδ. We
further have the freedom to rescale the z coordinate and remain in H, so we can change α, β so that αβ “ γδ “ 1.
This leaves two free parameters: α, γ. At this stage we see that the invariant cross-ratio for the vertex operators
is

x “

ˆ

1´ α2

1` α2

˙2

(6)

The last two conditions are a little trickier:

• The strip FE has length equal to half of A’s, namely π{2

• The strip DE has length equal to the Schwinger parameter τ

Enforcing the first constraint requires explicit integration along the piγ, iδq strip. Taking sin2 θ1 “
α´2

α´2`γ2
and

sin2 θ2 “
α2

α2`γ2
, k “ γ2, k1 “

a

1´ γ4 we can write these two constraints as:

1

2
“ Λ0pθ1, kq ´ Λ0pθ2, kq

τ

2
“ Kpk1qpZpθ2, k

1q ´ Zpθ1, k
1qq

(7)

Here Λ0, Z are Heumann’s Lambda and Jacobi’s Zeta function respectively. These are known functions expressible
in terms of elliptic integrals. All these constraints together allow us to explicitly write α, β, γ, δ in terms of τ .

The interesting physics comes from looking at the limiting cases. Consider now the limit τ Ñ8. This requires
Kp

a

1´ γ4q Ñ 8 ñ γ Ñ 0. Then Λ0pθi, 0q “ sinpθiq implies that we must have αÑ 0, and consequently xÑ 1.
In the other limit τ Ñ 0, assuming θ2 ‰ θ1, we similarly get γ Ñ 1. This will equivalently require θ1´θ2 “ π{4,

which algebraically implies x “ 1{2. Thus, we get that the s channel contribution reproduces exactly half the
integration region 1{2 ă x ă 1. The t-channel will give us exactly the other half. But are we really integrating
the right thing to give us Veneziano?

The answer is yes. For one, taking the Jacobian to express dτ in terms of dα gives (after messy algebra):

dτ “ ´
2π

Kpγ2q

dα
a

1` α2γ2
a

α2 ` γ2

Further, the integral with ghost insertions (4 c-ghosts 1 b-ghost) in terms of bosonized fields c “ eiφpzq, b “ e´iφpzq

looks like

ż

dz

2πi

dz

dw
ei

ř

a J
aφae´iφpzq “

Kpγ2q

2π

a

1` α2γ2
a

α2 ` γ2
1´ α4

α3
(8)

Here Ja is `1 on each of the four vertex insertions on the boundary, corresponding to the c ghost. A lot of
remarkable cancelation happens (this cancelation between the Jacobian and the ghost integral is generic) and we
are left with:

´ 2

ż

dα
1´ α4

α3
exp

˜

´
ÿ

iăj

pjpk xXpzjqXpzkqy

¸

“ ´
1

4

ż 1

1{2
dxx2p1¨p2p1´ xq2p2¨p3 (9)

This is exactly half of the Veneziano amplitude. Adding the t channel gives the other half.
From this, we see that the s and t channel string field diagram perfectly cover the region in Veneziano amplitude

where 0 ă x4 ă 1. This is part of a more general story. The open string Feynman diagrams provide a one-fold cover
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for the moduli space of open string diagrams. Zweibach showed this explicitly in [5]. He did this by considering for
a given worldsheet Σ a Hermitian metric that minimizes the area of Σ subject to the constraint that all nontrivial
Jordan curves have length ě π. Here a nontrivial Jordan curve is one that cannot be contracted while keeping its
endpoints fixed on a given boundary.

Indeed, these worldsheets resulting from this minimization problem will have a geometry of being everywhere
flat except at singular points, exactly mirroring the 3-vertex worldsheet constructions in Witten’s OSFT. Thus,
for a given Riemann surface of fixed moduli, SFT associates one and only one string diagram to it. This diagram
comes with a metric of minimal area subject to suitable length conditions. This section of Pg,b,n inherent in
Witten’s OSFT is what yields the particularly simple form of the action that we have seen.

A good way to highlight the conceptual difference and difficulties between closed and open string field theories
is by contrasting the straightforward decomposition of the Veneziano amplitude with a similar calculation on the
sphere: the Virasoro-Shapiro amplitude. For the disk amplitude, the relevant moduli space that we integrate
over is the real line corresponding to the fourth vertex insertion. We see that it is possible to choose consistent
coordinates around each of the first three punctures to provide a one-fold cover of that real line. Consequently,
the full amplitude can be expressed just in terms of the tree-level 3-point interactions. This is not the case for the
Virasoro-Shapiro amplitude, where the open disks around each of the first three insertions cover only a portion
of the full sphere, and consequently we must add higher order terms to the string field action to recover the full
amplitude. This speaks to the relative simplicity of open string field theory.

4 Tachyon Condensation in String Field Theory

In [6], Sen showed that the tachyon potential for a D-brane in the bosonic string theory takes a universal form as
a function of the tachyon field

V pT q “MfpT q

Here M is the mass of the D-brane and fpT q is universal in the sense that it does not depend on the background
that the D-brane is in, or even the dimension of the D-brane. We will not go over the arguments for universality in
this paper. Rather, we will show in the framework of string field theory that there exists a state |Tcy where fpT q
achieves a stationary point, and that in fact fpTcq “ ´1. This will imply that, upon reaching Tc, we will arrive at
V pT q “ ´M . The fact that the potential is exactly opposite to the mass of brane implies that the D-brane has
completely condensed to what Sen calls the non-perturbative vacuum of the bosonic string.

Following equation (4), fpT q is given in terms of the string field as

fpT q “ 2π2

ˆ

1

2
xI ˝ T p0qQBT p0qy `

1

3
xh1 ˝ T p0qh2 ˝ T p0qh3 ˝Ψp0qy

˙

(10)

The normalization is chosen so that, given M “ 1
2π2g2o

for the D-brane mass, we recover the potential through

MfpT q. Here T is a two-dimensional field that creates the string-field state |T y out of the SL2pRq-invariant vacuum
|1y, ie T |1y “ |T y.

We proceed via Sen’s formalism of level truncation, and follow the paper [7]. Let H be the Hilbert space of
states (not just physical) of ghost number 1 in the 2D CFT of the open string (ie 26 matter fields Xµ and the bc
system). Consider the subspace H1 given by acting on the SL2pRq vacuum by the b, c modes as well as the modes
Ln of the matter theory. That is

H1 :“ Spantc´i1 . . . c´ipb´j1 . . . b´jqL´k1 . . . L´kr |1y |il ě ´1, jl, kl ě 2u

The subspace H1 is background independent, and contains it it the zero-momentum tachyon state. And take
H2 “ H´H1

2. Importantly, we have that conformal transformations do not mix H1 and H2, nor does the kinetic
term QB have matrix nonzero elements between H1 and H2. Finally, the variation of S along H2 for a state
|Ψy P H1 is always zero, so that states in H2 appear quadratic or higher-order in the action.

Thus we can consistently truncate H Ñ H1. All fields in H1 can take expectation values. Upon taking the
normalization convention xx1| c´1c0c1 |1y “ 1, Sen’s conjecture takes the form fpTcq “ ´1 with fp0q “ 0.

The lowest lying state in H1 is tc1 |1y “ tcp0q |1y. Henceforth, the “level” of a state will always be measured
relative to this state.

2The notation “´” that Sen uses is ambiguous here. I believe it suffices for our purposes to define this as an orthogonal complement
with respect to the inner product, even if it is indefinite.
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4.1 Level 0

For the zeroth approximation, we take tc1 |1y “ tcp0q |1y and calculate the quadratic and cubic terms.

xI ˝ T p0qQBT0y “ t2 xx1| c´1p´c0qc1 |1y “ ´t
2

xh3 ˝ T p0qh2 ˝ T p0qh1 ˝ T p0qy “ t3 xx1|
1

r
c´1

1

r
p´c0q

1

r
c1 |1y “ ´

t3

h11p0qh
1
2p0q p1{h3q

1p0q

(11)

Take r3 “ ´h11p0qph2 ´ 1q1p0qp1{h3q
1p0q “

´

4
3
?

3

¯3
. From this zeroth order truncation, we get a tachyon potential:

fpT q “ 2π2

ˆ

´
1

2
t2 `

1

3

t3

r3

˙

(12)

This has its local minimum at tc “ r3 giving 2π2p´1
2r

2 ` 1
3q “ ´

212

310
π2 « ´0.684. This is already almost 70% to

the goal of ´1. Sen remarks the the cubic open string field theory performs the best among all choices of OSFT at
zeroth order. This is because of the fact that the parameter r, related to the mapping radius of the disks defining
the three string vertex, is maximal for the coordinate system of the cubic string field theory, and consequently
|fptcq| is maximal.

4.2 Higher Levels and Twist Symmetry

The higher levels are only technically, but not conceptually, more difficult. We will illustrate the next level so as
to give a more complete picture.

Before going forward, an important step that simplifies the higher-level calculations is to note that the action
(4) has a Z2 symmetry

|Ψy Ñ p´1qL0`1 |Ψy

which leaves even level states invariant. To see this, note the following relationship with Ĩpyq “ 1{y :

h1p´zq “ Ĩ ˝ h3, h2p´zq “ Ĩ ˝ h2, h3p´zq “ I ˝ h1

Then, with Mpzq “ ´z, using the fact that the correlation functions are invariant under SL2pRq and worldsheet
parity, we have3

xh1 ˝ T p0qh2 ˝ T p0qh3 ˝ T p0qy “ xp´1qL0h1 ˝M ˝ T p0qh2 ˝M ˝ T p0qh3 ˝M ˝ T p0qy
“ xp´1qL0 Ĩ ˝ h3 ˝ T p0q Ĩ ˝ h2 ˝ T p0q Ĩ ˝ h1 ˝ T p0qy
“ xp´1qL0`1h1 ˝ T p0qh2 ˝ T p0qh3 ˝ T p0qy

Odd levels must thus enter the action in pairs, and setting these fields to zero satisfies the equation of motion. We
can thus consistently truncate to even levels.

At level 2 the states that contribute are

c´1 |1y , L´2c1 |1y , b´2c0c1 |1y .

By imposing Seigel gauge b0 |Ψy “ 0, we can simplify this further. It is not clear that this gauge choice can be
justified in the interacting theory. First, note that in the linearized theory for a state at level 2n, defining

|T̃ p2nqy “ |T p2nqy ´
1

2n´ 1
Q´1
B b0 |T

p2nqy

gives a state satisfying b0 |T̃
p2nqy “ 0. Thus, we can always pick a cohomology class that satisfies Seigel gauge.

In the linearized theory, we are free to do this level-by-level. Moreover, this gauge is sufficient in that it leaves
no residual gauge direction. If there were such an additional direction satisfying Seigel gauge |η2ny, then b0 |η

2ny

together with QB |η
2ny gives L0 |η

2ny “ 0, but since |η2ny is at level 2n we must have L0 |η
2ny “ 2n´1. Under the

assumption that the interactions are small enough, we can continue to keep this gauge in the interacting theory.

3Thanks to Atakan for pointing out this proof.
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Thus, at level 2 we can write an arbitrary state in Seigel gauge as

|T y “ tc1 |1y ` uc´1 |1y `
v
?

13
L´2c1 |1y

“ tcp0q |1y ` u
1

2
B2c |1y `

v
?

13
cT p0q |1y

(13)

where the coefficient v{
?

13 was chosen as in Sen’s paper, for convenience. Before plugging this into the potential,
let us only keep terms in fpT q up to a certain level. Note that the quadratic term will necessarily involve terms of
level 4 at this truncation of |T y, so it makes sense to truncate the cubic term also to level 4. It will thus involve
terms of the form t3, t2u, t2v, tu2, tv2 and tuv. In general when truncating the state at level n we can define such
a level 2n approximation to the potential f2n.

Given that the Schwarzian vanishes for inversion I, we get that the BPZ conjugate of |T y is

xxT | “ xx1| tc´1 ` xx1|uc1 ` xx1|
v
?

13
L2c´1

ñ xxTQbT y “ t2 xx1| c´1L0c0c1 |1y ` u
2 xx1| c1L0c0c´1 |1y `

v2

13
xx1|L2c´1L0c0L´2c1 |1y

“ ´t2 ´ u2 ` v2

(14)

The cubic term is involved, but can be done. The main complication comes from the fact the the fields are no
longer primaries. We will have

h ˝
1

2
B2cp0q “

1

2
B2

ˆ

1

h1p0q
cpfp0qq

˙

h ˝ cT p0q “ h1p0qcT pfp0qq `
1

h1p0q
Spf, 0qcpfp0qq (15)

where S is the Schwarzain derivative ´26
12

ˆ

f3

f 1 ´
3
2

´

f2

f 1

¯2
˙

. At level 2 with interaction up to level 4, we get

fpT q “ 2π2

ˆ

´
1

2
t2 ´

1

2
u2 `

1

2
v2 `

33
?

3

26
t3 `

11ˆ 3
?

3

26
t2u´

5ˆ 3
?

39

26
t2v `

19

26
?

3
tu2 `

7ˆ 83

263
?

3
tv2 ´

11ˆ 5
?

13

25 ˆ 3
?

3
tuv

˙

(16)
This indeed has a critical point Tc given by t « 0.524, u « 0.172, v « 0.187 and fpTcq « ´0.949. This brings us
up to 95%.

For calculating the interaction at level 6, we do not need to add any new terms to |T y, since odd terms are
excluded. We get additional u3, v3, uv2, u2v contributions to the cubic interaction term, and find fpTcq « ´0.959,
a marginal improvement. Finally Sen calculates the potential with the state |T y truncated at level 4, keeping up
to level 8 interaction terms. This gives a Tc so that fpTcq “ ´0.9864, 99% of the way there. It does indeed appear
that this sequence converges quite rapidly to the desired value of ´1.

4.3 Subsequent Progress

We have seen strong numerical evidence that the tachyon potential exactly cancels the D-brane tension, and
surprisingly we only needed to use low-lying levels in the framework in string field theory to see this highly
nonperturbative effect. Moeller and Taylor [8] later did this to level 10 truncation with level 20 interaction, giving
fpTcq “ ´0.99912. Finally, Schnabl [9] gave an analytic solution, proving Sen’s conjecture.
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